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Abstract. Perfect single grains of the AIPdMn icosahedral phase have been used for
structure determination by x-ray and neutron diffraction. Owing to the large difference
between x-ray and neutron scattering factors, information is gained on the atomic
positions of the three elements. A model is proposed as deduced from a six-dimensional
(¢0) Patterson analysis. Six different atomic hypersurfaces are located on node and body-
centre sites of the oD lattice. The superstructure that leads 1o a face-centred lattice is
mainly due to a strong chemical ordering, all the palladium being on the even node and
odd body centre of the b cube. The resulling 3D structure contains icosahedral clusters
similar to the external shell of the Mackay icosahedron, with two kinds of chemical
decoration. The structure may also be described via a quasi-periodic stacking of fivefold
planes, Each set of planes is characterized by an average chemical composition and
local order. This kind of description helps in the understanding of quasi-crystal growth,
formation of dislocations and dynamic properties.

1. Introduction

Quasi-crystals are new types of solids that defy previous standard classifications. They
are neither periodically ordered, like ordinary crystals, nor disordered or amorphous
solids. They have a well defined, discrete group symmetry, like crystals, but one that
is explicitly incompatible with three-dimensional (3D) periodic translational order (e.g.
exhibiting five-, eight-, or 12-fold symmetry axes). Instead, quasi-crystals possess a
novel kind of translational order known as quasi-periodicity.

Atomic order is best defined in terms of the Fourier transform of the mass density
of the solid. In an ordinary crystal, this transform can be written as a Fourier series:

o(r) = 3 3 p(G)epliG 7). M
G
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The set of wavevectors & define a discrete reciprocal lattice in which each wavevector
in the sum can be written as an integer linear combination of three ‘basis> vectors a}

G = ha] + ka3 + laj. {2)

The a; are integer linearly independent, which means that G = 0 if and only if all
the h, k, { = 0. The a] are said to span the reciprocal lattice. They are related to
the ‘basis’ vectors @, that define the unit cell of the crystal in physical space:

,. {0 if i3
a - a. =

T 2w if i = j.

In a quasi-crystal, the Fourier transform of the mass density is also a Fourier
series and the wavevectors in the Fourier sum also form a discrete reciprocal lattice.
However, the number of integer linearly independent basis vectors required to ‘span’
the reciprocal lattice exceeds the spatial dimension, and the point symmetry of the
reciprocal lattice is incompatible with periodic translational order. For example, six
basis vectors are required to span the reciprocal Jattice for three-dimensional quasi-
crystals with icosahedral symmectry:

G = nyaj] + nyal + niai + nga; + ngai + ngap 3

where the a] can be sclected to point along the fivefold axes of an icosahedron. In a
well chosen cubic coordinate system (i.e. three twofold axes) the e} vectors are of the
form (£1, +7, 0) (and permutations) with 7 = (14+v/5)/2 = 2cos 36° = 1.618034...
the golden mean. Thus, all the vectors G have cubic coordinates of the form (h+ Th’,
kE+ 1k, I+ 7'y with A, h', k, k', I, U integral numbers (selected within extinction
rules). This is the simplest possible definition of a quasi-crystal. The dense reciprocal
space of a quasi-crystal as described by equation (3) may be given a periodic image in a
high-dimensional space; for instance, equation (3) may be considered as a description
of a six-dimensional (6D) periodic reciprocal lattice whose Fourier transform would
generate 6D periodic mass density distribution. Projection and cut operation will then
rclate the physical 3D description to its 6D image.

As a consequence the atomic structure of icosahedral phases is now best
understood via a 6D crystallography approach [1-3]. In this scheme, the conventional
tools of crystallography, such as Patterson analysis, can be used in the analysis (for
a review see {4-7]). It has been shown that the most natural way of analysing such
diffraction data is the so-called cut method, as proposed by Bak [8] and Janssen [9],
and first applied by Gratias ef a/ [10]. Hereby the periodic image space is decomposed
into two subspaces, ie. E,,, the physical space, and Eferp, the complementary
space. The quasi-crystalline structure is defined by a set of atomic hypersurfaces
that decorates the 6D cube. The purpose of any structural determination thus reduces
to (i} locating the different atomic hypersurfaces and (ii) determining their precise
volumes and shapes. However, atomic hypersurfaces are not point-like objects and
would require the determination of an infinite number of parameters in order to be
completely specified. A first simplification comes in if contrast variation is feasible,
which allows the partial atomic correlations to be disentangled from each other [11-
13]. But additional constraints must be also injected into models. The first of these,
which is trivial, is atomic density, along with chemical composition and unphysically
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short distances in physical space, which have to be avoided. This already limits the
set of possible solutions to variation around a common hard core, which represents at
least 80-90% of the total structure. Further additional constraints may originate from:
(i) forcing the frequency of a selected cluster to a maximum as in the i-AIMnSi model
proposed by Duneau and Oguey [14]; and (ii) the so-called closeness condition, which
prevents the annihilation~creation of atoms under phason-like translation [15, 16] (as
in the i-AlCuFe model proposed by Cornier-Quiquandon et al [17]).

Following considerations on possible growth mechanisms of quasi-crystals, it
has been sugpested that real quasi-crystals should be described by random tiling
models (as opposed to the perfect quasi-crystal description). Phason fluctuations
(corresponding to tile rearrangements or atomic jumps) would result in structures
entropically stabilized at high temperature [18-20]. In such models, sharp Bragg
reflections are still present, but phason fluctuations cause diffuse rings around peaks,
whose intensity scales with Q.. A systematic measurement of the weak diffuse x-ray
scattering around strong Bragg peaks of an annealed AlCuFe single quasi-crystal has
been done recently by Mori ef al [21]. They did not find any Q. -dependent diffuse
scattering, which implies that phason fluctuations, if any, are very small.

The best candidates for structure determination from diffraction data are the
recently discovered phason-free, ‘perfect’, stable quasi-crystals AICuT (T = Fe,
Ru, Os) and AIPAT (T = Mn, Re) [22-24]. The width of the Bragg reflections,
when measured on a high-resolution diffractometer, is limited only by instrumental
resolution and does not show the broadening expected from quenched-in phason
strain [25-27].

This paper reports on a single-crystal x-ray and neutron diffraction study of the
i-AlPdMn phase. Contrast variations on Mn sites have previously been measured with
powder neutron diffraction techniques, leading to positions and raw shapes of atomic
surfaces corresponding to (AIPd) versus Mn atoms [28]). However, powder samples
do not allow one to measure properly the degenerate reflections (having the same
|@], but different orbits). Moreover, distinction between Al and Pd sites is difficult
in measurements made by neutron diffraction, owing to similar scattering lengths of
Al and Pd. The use of both x-rays and neutrons is particularly attractive, since x-rays
will mainly probe Pd order, whereas neutrons will probe Mn order. The situation is
similar to the AILiCu quasi-crystals, for which models have recently been proposed
[13, 29, 30], and much more favourable than for AlFeCu, for which only weak contrast
effects can be expected [17].

2. X-ray data

Large single grains of the AIPdMn icosahedral phase were obtained by the
conventional Bridgman growth technique [27]. Spherical grains with approximate
radius of 140 ym were cut and set on the tip of a glass fibre for the purpose of single-
crystal x-ray diffraction measurements. The sample was fully characterized to be of
perfect quasi-crystallinity, i.e. without any detectable quenched-in phason strain, and
single phase. The composition was determined by electron probe analysis and found
to be equal to Alg ,Pd,, ;Mn, ; [27]. The measured density is 5.1 (£0.2) g cm=3,
Figure 1 shows typical x-ray Laue transmission diffraction patterns taken along the
twofold, fivefold and threefold directions.

Data collection was performed with a Nicolet four-circle diffractometer equipped
with a molybdenum x-ray tube (A = 0.7107 A). Integrated intensities were collected
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Figure 1. Transmission x-ray Laue diffraction
pattern obtained with a single AIPdMn icosahedral
grain (molybdenum tube). (@) Twofold, (b) fivefold
and {c) threefold zone axis.

by w scan of the Bragg reflections. A total of 600 reflections were measured in the
asymmetric unit, 360 of which with intensities I greater than twice the standard deviation
o(1). The region of reciprocal space scanned corresponded t0 Qp,, up to 10 A-1 and

Qperp UP t0 1.5 A~!, with an almost constant resolution equal to 0.08 A=! [31].

A subset of 120 reflections was selected in order to check their equivalence under
the icosahedral point group: fluctuations beyond statistics were not observed, except
for a few cases for which absorption, extinction and/or multiple scattering effects may
be involved. The v scans, in which the sample is rotated around the reciprocal vector,
did not show either any fluctuations greater than the statistical ones. Laue (if any)
and fluorescence effects were accounted for by subtracting a flat background under
each peak. Integrated intensities were then corrected for absorption and Lorentz
polarization. A short report on part of these x-ray data has been presented previously
and is being published in conference proceedings [31].

3. Neutron data

3.1. Single-crystal data
An ingot with nominal composition Al,,Pd; Mng was prepared from the pure element
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in a plasma jet furnace. It was then sealed in a quartz cell and annealed for 3 days
at 800°C, and then quenched in liquid nitrogen. The annealed ingots were crushed
into two or three pieces. It was observed that the specimens showed a crystal-like
planar cleavage, and the newly obtained surfaces were flat and had a mirror-like
reflectivity. Electron channelling patterns (ECP) showed that the cleaved surfaces are
usually normal to a fivefold axis. However, surfaces normal to a twofold axis or to
a threefold axis were also observed. The single quasi-crystal selected for neutron
diffraction measurements is presented in figure 2(a). The surface observed is normal
to a fivefold axis as indicated by ECP (figure 2(b)). Along the line underlined by two
arrows in figure 2(a) the quasi-crystal unit was separated from the rest of the ingot
by cleavage. The orientation of the newly obtained flat surface was determined by an
ECP and was found to be normal to a twofold axis (figure 2(c)) [32].

Figure 2. (4) SEM micrograph of large Al-Mn-Pd
single quasi-crystals. Scale bar [ mm. Arrows mark
grain boundary, (b) Electron channelling pattern
normal to fivefold axis. Scale bar corresponds to
an angle of 5°. {(c) Electron channelling pattern
normal to twofold axis, obtained on the surface
after cleaving the ingot along the line indicated by
arrows in {a). Scale bar corresponds to an angle of
43°.

Four-circle neutron diffraction data were collected at the 5C2 instrument located
on a hot beam of the Orphée Reactor (Léon Brillovin Laboratory). The beam is
monochromatized to A = 0.8308 A with a Cu [220] monochromator. A systematic
search for Bragg reflections did not show any subsidiary grains,

The data collected correspond to w scans between 5° and 30° and to w — 20
scans for angles greater than 30° (Qp,, < 11.8 A~' and Q. < 0.95 A~!). The
resolution is almost constant and equal to 0.08 A~L. A total of 434 Bragg reflections
were measured in the asymmetric unit. A subset of 192 peaks have intensities greater
than 2o (7). Each reflection was measured three times by application of the threefold
rotation; fluctuations greater than the statistical ones were not detected.

3.2. High-resolution powder diffraction data

An ingot with nominal composition Al; Pd ¢Mn,, was prepared by induction melting
and solidified in a water-cooled crucible. The ingot was then ground into a fine
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powder for the purpose of high-resolution powder neutron diffraction measurements.
Data were collected at the Intense Pulsed Neutron Source (ISIS, Rutherford Appleton
Laboratory) on the time-of-flight HRPD diffractometer. The apparatus was set in
back-scattering configuration resulting in a constant AQ,,,/Q,,, resolution equal to
0.0008, ie. one to two orders of magnitude better than for the above four-circle
experiment. The accessible Q,, ranged from 1 to 12 A-'. Advantages of powder
diffraction are twofold:

(i} All the reciprocal space is scanned, which allows one to check that no
reflection was missed when performing the four-circle experiment. In fact scanning
systematically all the reciprocal space is impossible in a four-circle experiment, owing
to the reciprocal space of an icosahedral structure being densely filled. Practicaily
only those reflections which have a Q.. value lower than a threshold are effectively
measured in a four-circle experiment.

(i} The high resolution allows one to make accurate measurements of possible
quenched-in phason strain,

A typical powder diffraction pattern is shown in figure 3. All the peaks can be
indexed according to the scheme proposed by Cahn e af [33] and have effectively
been measured in four-circle experiments. The peak widths are slightly larger than
the instrumental resolution, but do not show any obvious Q,,., dependence (figure 4).
By contrast, similar samples obtained by the melt spinning technique exhibited a very
strong Q,.,, dependence. Peaks were fitted by pseudo-Voigt functions convoluted
with the instrumental resolution, using the ISIS software package [34]. Owing to the
very good resolution and the large (Q-range accessible, the integrated intensities of
106 reflections were measured, which corresponds to 171 independent refllections.

Finally, it has to be emphasized that, for all experimental data presented here,
Qperp-dependent diffuse scattering was not observed and the lineshape of Bragg
reflections did not depend on Q. in any of these neutron and x-ray experiments.
This means that, even if this quasi-crystal is of a random tiling type, phason
fluctuations are small enough for a description in terms of a perfect quasi-crystal
to be completely adequate.

4, From diffraction data to the six-dimensional structure

The first step in diffraction data analysis consists of finding the Bravais lattice and the
unit-cell parameter. As already shown for AlCuFe [35,36] and AIPdMn samples {37],
the reciprocal lattice is body-centred. The indices fall into two categories, i.e. all odd
or all even 6D indices. However, the intensities of Bragg reflections corresponding to
all odd indices are weak, so that the reciprocal space is best described by a primitive
cubic lattice with a set of superstructure reflections with their indices all half-integers
[36]. This corresponds to a primitive cubic unit cell in direct space with a parameter
a = 6.451 A, and two families of lattice nodes, even or odd, where the parity refers
to that of the sum of the six corresponding coordinates. The superstructure is induced
by small differences in atomic hypersurface shapes, volumes and/or chemical species
involved. No other extinction than the one originating from the BCC reciprocal lattice
has been observed, so that the space group is either Fm35 or F235 (centrosymmetric
or non-centrosymmetric) [38]. In the following, lattice nodes of interest are going
to be labelled ny and n, with 6D coordinates [000000] and [100000] respectively.
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Figure 3. High-resolution powder diffraction pattern. Main Bragg refiections are indexed
following the indexing scheme proposed by Cahn e ai [33].

Body-centre sites with 6D cordinates £[111111] and 4 [111111] will also be given
labels, ie. be, and be,, respectively.

4.1. The six-dimensional Patterson analysis

As for any periodic distribution of density, the 6D Fourier transform of the peak
integrated intensities measured with quasi-crystals gives a 6D Patterson function. It
corresponds to the autocorrelation function of the time-averaged density. For a
monatomic system, one can write

Q) = (@I F(QI 4)

where w(Q) is related to the interaction mechanism between one atom and the
radiation used. For instance |u(Q)|? is the atomic scattering factor (or form factor)
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Figure 4. Enlarged pant of figure 3, showing two Bragg reflections with their Qperp value
in a 3:1 ratio. There is no significant broadening.

S for x-rays and the scattering length b for neutrons. F{Q) is the structure factor,
related to the Patterson function FP(r) via the expression

IFQP = [ P(r)exp(-iQ vy dr
with
P(r) =+ f () p(r' + 7Y dr' = (p(0) p(r)). S)

Here N is the number of atoms in the sample, p(r) the mass density function, and

* means convolution product.
In a polyatomic system, partial Patterson functions can be defined in a similar

way:
I [ I ! E
Pi(r) = . (7)o (v +7)dr" = (p(0)"p; (7). (6)

Then, the Fourier transform of the peak integrated intensities is a linear combination
of the F;(r), weighted by the product f; f; (for x-rays) or b;b; (for neutrons). This
weighted sum of the partial Patterson functions is usually referred to as the ‘total
Patterson function’ (TPF). The b, are constant parameters but the x-ray atomic form
factors are @Q-dependent. This is crudely accounted for by normalizing the x-ray
integrated intensities to the mean square value of the atomic form factor defined as:

U= afl

where ¢, are concentrations of the atomic species in the material. Conclusively, the
Fourier transforms of the intensities of the x-ray (neutron) diffraction peaks properly
indexed in the 6D scheme give a set of TPF such as:

TPF:Zfifj(bibj)Pij(T) {7
if
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(£ f; for x-rays, b; b; for neutrons).

Figure 5 reproduces a planar slice of éD TPF examples, containing two fivefold axes
taken in the physical 3D space for one and in the complementary space for the other.
The TrF features appear as traces, elongated on the perpendicular space axis. Their
actual width in the physical space is mainly due to truncation effects in the Fourier
transform procedure. These observations hold true for any 2D slice of the 6D TPF,
which means that the TrF features are basically 3D full ‘objects’ in the perpendicular
space, with point-like intersection with the physical space. These TPF ‘objects’ have
centres that are located at four positions only, namely n;, n,, bc, and b, (see
figure 5). This corresponds to atomic hypersurfaces whose centres can also only be
in positions ny, n;, bcy and bey, i.e. at points with very high symmetry in the 6D cubic
lattice. This solution is centrosymmetric, although in principle Patterson functions
do not give information on whether the structure is centrosymmetric or not. It just
happens here that the only structural solution compatible with the measured TPF is
a centrosymmetric one, in agreement with contrast variation effects {28]. To be fair,
the point is not universally accepted. Recently, Lee et al [39] have measured directly
the phase differences of the structure factors, using dynamic Renninger effects, on
an AlCuFe sample whose atomic structure is similar to that of AIPdMn. Their result
deviates significantly from a centrosymmetric solution. (It has to be noted, however,
that the theoretical treatment used by these authors may not be applicable to quasi-
crystalline cases.) A possibility might be that the shape of the atomic hypersurfaces
is not centrosymmetric: this cannot be ruled out by the Patterson analysis, but the
non-centrosymmetric character, if any, can be only very weak.

Looking back now at equation (7), it can be expected that TPF reflect mainly
the density distribution related to atoms with strong f;(5;). In the present case,
TPF obtained from x-ray data are certainly reflecting palladium distribution in the
structure, since Z,, = 46 compared to Zy, = 25 and Z, = 13. The TPF obtained
from neutron data are not very sensitive to Pd versus (Al, Mn) order but heteroatomic
correlation with Mn has a negative contribution to the TPF owing to its negative
scattering length (by, = —0.373 while b,, = 0.3449 and bpy = 0.591 10~'2 cm).
This is actually exemplified with profiles of the density—density correlations, resulting
from planar cuts of the TPF in the perpendicular space and ilustrated in figure 6.
These profiles show clearly that the TPF maxima centred at ny, n;, bc, and be, result
from large atomic hypersurfaces centred at ny and n,, plus small atomic hypersurfaces
centred at bc, and be, {28]. Some chemical order effects appear in slope changes
{figure 6(b)) for profiles of the TPF maxima, which are deduced from neutron data:
the inner core of atomic hypersurfaces located at n; and ny corresponds to manganese
atoms while an outer shell contains the contribution from Al and/or Pd. Moreover,
a large difference in density-density correlations between ny and n, TPF maxima
shows up when obtained from x-ray data (figure 6(a)); it is consistent with the Pd
atoms contributing to the outer shell of the ny atomic hypersurface but not to the
n; one. The large density-density correlations showing up at the be, position in the
TpF deduced from x-ray data indicates that Pd atoms contribute also to the atomic
hypersurface located at be; [31). These results, together with the powder neutron
contrast variation experiment [28], where the size of the Mn atomic surfaces has
been determined, lead to a crude model that is described in the following section.

4.2. A crude modelling
Reasonably founded information about the size of the different atomic hypersurfaces
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Figure 5. Rational cut of the e« Pallerson Figure 6. Profiles of the various Patterson density
function, in a plane containing a fivefold axis in  featurcs on even {(——) or odd (-.--.. ) lattice
both the physical and the perpendicular space, as  nodes, and on even (----) or odd (— - —) body

deduced from single-crystal x-ray (¢) and neutron  centres as deduced from x-ray (a) and neutron (&)

(b) diffraction data. The primitive unit cell is  data. The large difference between odd and even

outlined. lattice-node profiles obtained from x-ray data is due
to chemical ordering, Pd being located on ny.

may result from models using balls and spherical shells. Actually, at small values of
Qperp (€. smaller than 0.5 A-1), the Fourier transform of an atomic hypersurface
B malily mfiuciiced Uy 1S Siz€ and does nui depend un lis precise shape.  This
is illustrated in figure 7, where the Q,,, dependence of the amplitude of the
structure factor [F(Q)| (square root of the intensity, corrected for absorption,
Lorentz polarization and Debye—Waller factor) is shown. Had we had to consider
one single atomic hypersurface in the 6D structure (simple cubic primitive lattice)
F(Q) would have been proportional 10 G(Qr), the Fourier transform of the
atomic hypersurface. It is a smooth decaying function at low values of Q. In the
present case, several {say n) atomic hypersurfaces have to be considered and we must
express F(Q) as

F(Q) =Y b,G(Qpery) Xp(—iQ - By). ®

=1

R, are the space positions of the centres of the atomic hypersurfaces in the 6D
cubic unit cell; b, is for neutron scattering length and must be replaced by f; when
x-rays are concerned. The R;-vectors are only 6D lattice vectors (ny, ny) or ‘half’
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6D lattice vectors (bc,, bey). The Q-vectors correspond to the Bragg peaks indexed
in the 6D reciprocal space. They belong to two principal families, corresponding
cither to primitive (strong) reflections with all integer indices (even reflection such
as (000000) or odd reflection such as (000001)) or to superstructure (weak)
reflections with all half-integer indices (integers are again either even or odd). The
parity on the reflection indices is transferred to the Q. and Q p Modulus via the
parameters NV and M, as defined elsewhere [17,33]. The consequence of R; and
Q having special forms is that exp(—iQ - R,;) in equation (8) takes only values 1.
Thus, rewriting C; = b; G1(Qperp) for brevity, equation (8) has the general form

F(Q) =) xC,. (9)
i

(Each C; contains possibly several contributions if the global atomic hypersurfaces
at position R, have to be decomposed into component volumes corresponding to
different atomic species.) There are only four alternatives for equation (9), ie. [17]:

(1) even primitive reflections F(Q) = +C, + C’“I + C’ch + Cpe,s
(ii) odd primitive reflections F(Q) = +C + Gy, = Cye,s
(iii) even superstructure reflections F{Q) = +C‘ Cn' + Chey = Cheps
(iv) odd superstructure reflections F{Q) = +C',,o = Cy = Coey + Che,-

Q

Thus, the Qpe,P dependence of the structure factor splits into four familics as shown
in figure 7. Four such branches have been observed previously with AlCuFe single-
crystal data [17] and AIPdMn powder data [28]. The next step in the interpretation
of the data is to fit the low-Q., parts of these four branches with Gy(Qperp)
functions (equations (8} and (9)) corresponding to balls and/or spherical shells.
As a first approximation, atomic hypersurfaces have been supposed to lie in the
perpendicular space. This hypothesis is compatible with the observed TPF whose
traces in slices (figure 5) of the 6D space appear to be confined in ‘cigar-like’ shapes
along an axis in perpendicular direct space. One should note, however, that a small
parailel component (i.e. lower than 0.6 A) would hardly be recognized on a density
or Patterson map because of smearing truncation effects [40]. Within density and
chemical composition constraints, the best fit to low-Q ., data of the four F(Q)
branches was obtained with atomic hypersurfaces defined as follows:

(i) A core of Mn (radius 0.83a, where a is the parameter of the 6D cube)
surrounded by an intermediate shell of Pd {extending up to 1.26a) and an outer shell
of Al (up to 1.55a) centred at n, position.

(ii) A core of Mn (radius 0.52a, about 1.6 times smaller than the one on the
n, node) surrounded by a shell of Al (up to 1.64a, ie. larger than the n, one) but
without palladium, centred at the n; position.

(iii) A ball of Pd (radius 0.71a) at bc, position.

(iv} A small ball of Al (radius 0.3¢) or an empty volume at bc,, position. {The fit
did not show differences between these two hypotheses since the Al volume involved
is very small.)

Such a crude spherical model is found to fit the data relatively well and results
in residual R-factors of 9% for x-ray and 16% for neutron data when considering
reflections with Q. < 0.5 A~!. Such R-factors would be considered as relatively
poor in classical crystallography. But there are actually no published models that,
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Figure 7. QQper, dependence of the structure factors for x-ray (a,b) and neutron (c, d)
data. X-ray data were normalized to the mean value of the alomic scaltering factor
(which is Qpr-dependent), and both data were corrected by a mean Debye—Waller
factor. In both cases each set of primitive reflections (), (¢), corresponding to N =2p
decomposes in two branches according to the parity of M (+M even, 0 M odd). For
superstructure reflections (b), (d), corresponding to N = 2p <1 a similar decomposition
is seen (¢ A even, + M odd). N and M refer to the indexing scheme proposed by
Cahn et al [33] and are directly related 1o the reflection parity [17].
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Figure 8. Contour plot of different
sites observed in the Paiterson
function. The representation is in
the perpendicular space. Even and
odd body-centre sites obtained with
x-ray (@), (b) and neutron (¢), (d)
data. The ooordinate axes and
the perpendicular to the figures are
twofold axes in the complementary

(perp) space.

to our knowledge, would better fit x-ray and neutron data altogether. The fit of
the present crude model to high-order weaker reflections appears t0 be not that bad
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(B-factor of 11% and 20% for x-rays and neutrons respectively). Clearly, to improve
the fit to both low- and high-order reflections, facetting of the atomic hypersurfaces
has to be introduced. This search may somehow be guided by the shape of the
TPF maxima when looked at in perpendicular space. In some cases this function
exhibits visible facetting (figure 8). In principle the shape of the density-density
correlations is complicated since it originates from the self-overlapping of different
atomic hypersurfaces with different weight corresponding to the scattering length of
the atom. However, in the present case, as noticed by Cornier-Quiquandon e al
[17], the relatively small atomic hypersurface located at the body-centre position acts
as a probe. When looking at the body-centre density-density correlation, in the TPF
map, information is mainly obtained about the shape of atomic hypersurfaces sited
at ny or n;. This probe is more efficient when the scattering lengths of elements are
close to each other, as is the case for neutron diffraction data where b, and by, are
closer to each other than with x-rays. Effectively, a facetting is seen in figures 3(c)
and (d), where in one case there is a bump along the fivefold axis and a depression
along the threefold axis as for an icosahedron, whereas in the other case contours
are reminiscent of a triacontahedron. This is probably an indication of differences in
the external shape of the two n,; and n, atomic hypersurfaces similar to those in the
AICuFe quasi-crystal [17].

Pushing the interpretation of the facettings exhibited in figure 8 to its extreme, it
is probably tempting to suggest that:

(i) The atomic surface corresponding to the Mn core at n; position has a
triacontahedral shape.
(ii) The Mn core is a dodecahedron at n, position.

But this is only very tentative and must be confirmed further in the future.

An alternative approach is to fit the data with atomic hypersurfaces that are
composed by superimposing spherical harmonics of icosahedral symmetry {41]. It has
been applied successfully to our diffraction data measured with AICuLi quasi-crystals
[13]. This looks very promising and is in progress for the present system.

For comparison, the present data were also confronted with three other types of
models, in their simplified ‘spherical’ version:

(i) A modified Duneau-Oguey description [14]). The main difference concerns
small atomic surfaces that are Jocated at the mid-edge of the 6D cube.

(ii) A structure similar to that found experimentally for the AIMnSi quasi-
crystal [12]. In both models the atomic surfaces have identical external shell on
n, and n, lattice nodes and a relatively small body-centre atomic surface. The FCC
superstructure has exclusively a chemical origin.

(iliy A model similar to that proposed for AICuFe quasi-crystal, where
superstructure originates from both chemical and crystallographic order [17].

Globally, these three descriptions are less adequate than the previous one. Models
(i) and (ii) exhibit a too-small body-centre site when compared to Patterson functions,
whereas model (iii) induces too weak a mass density (0.060 atom/A3 instead of 0.066
atom/A%).

The density problem in (iii) has recently been corrected [42] in a modified model.
It may fit closer to the present data.

Isotopic substitution on Cu and Fe in AlFeCu quasi-crystals {42] has also shown
some evidence of chemical order that compares reasonably well with the one proposed
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in the present work for AIPdMn. Iron contributes to cores of atomic hypersurfaces
sited at n, and n, positions. Shells of copper appear at n, but also at n, and there is
a ‘ball’ of copper at bc,. Outer shells of Al are visible at n, and n;. The position be,
is unoccupied. The Al shells are partially mixed with iron. Conclusively, differences
with the present analysis come from (i) Al-Fe partial disorder while Al-Mn are not
mixed, (ii) Cu cores are sited at both n, and n; while Pd is only at n;, and (iii} Fe
cores have equal sizes at n; and n; while Mn cores have not.

Finally, it is interesting to wonder how far such a spherical model is from the
‘true’ solution. As has been pointed out repeatedly, since atomic hypersurfaces need
an infinite number of parameters to be completely specified, there will be an infinite
number of models fitting equally well the same (finite) set of data. However, models
must have a common ‘hard core’, which represents at least 80-90% of the total
number of atoms [7,43]. This is mainly due to the constraint imposed by composition
and density. The 6D space is widely open but positioning atomic hypersurfaces that
reproduce the experimental atomic density and avoid short distances forces solutions
in which atomic hypersurfaces are in contact. This strongly restricts the degrees
of freedom for modelling. Finally, fitting low-Q,,., data may be viewed as a ‘low-
resolution” image of the icosahedral structure, whereby the term ‘low-resolution’ refers
to perpendicular space. This is reminiscent of current methods of modelling applied
in biology for structure determinations of large proteins.

The AIPdMn icosahedral phase belongs to one of the two icosahedral families
that are characterized by large atomic hypersurfaces at the lattice nede in 6D cubic
image and by small ones at the body centre, The main result of the present study
has been to specify where the different atomic species are in these two families of
atomic hypersurfaces and to give a ‘low-resolution’ image of the structure.

5. About the resulting three-dimensional structure

As a result of the previous discussion, it is interesting to look at what are the ‘basic’
or ‘hard core’ features when generating the 3D structure as a cut through the sD
image. Following what has been done with the AILiCu quasi-crystal [13], we may
seck local icosahedral clusters. or alternativelv we can describe the structure in terms
of dense atomic planes. This is of particular interest for considerations on crystal
growth, dislocations and also physical properties of the quasi-crystalline phase, such
as vibrational states and the electronic structure.

The nature of icosahedral clusters that exist in the 3D structure can be found
following the procedure proposed by Duneau and Oguey [14]. Comparing the sphere
sizes of interest with Duneau-Oguey atomic hypersurfaces, it can be shown that the
external shell of a Mackay icosahedron is actually present in the structure. In the
i-rAIMnSi phase, the Mackay icosahedron decomposes into three shells, namely a
small Al icosahedron, a twice larger Mn icosahedron and an Al icosidodecahedron
(30 atoms along twofold directions) [44,45]. In the AIPdMn icosahedral phase the
internal small icosahedron is replaced by picces of an Al dodecahedron. Two kinds
of external shells are found, depending on the parity of the high-dimensional lattice
node where the cluster centre is sited. In the 6D description the Mn inner core has
a radius smaller than the standard triacontahedron; this implies that the resulting 3D
large icosahedron is occupied by Mn atoms plus a small number of Al or Pd atoms.
The external icosidodecahedron is made of either Al atoms alone or of Al plus Pd
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Figure 9. {a) Twofold projection of the icosahedral AIPdMn structure as obtained
by Fourier transform of the Qpa(Z) = 0 layer of the reciprocal space. The map
shows contour piots of the electronic density. Dense contour regions correspond to
high electronic density projection. Densest plans show up perpendicular 1o the fivefold
direction. (b) Fivefold projection. This may be compared to high-resolution electron

nicroscopy.
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Table 1. Position and chemical composition of a series of atomic planes perpendicular
to a fivefold axis. The coordinate Zs (A) of each plane, along this fivefold axis, is
given, along with the corresponding number of Al, Mn and Pd atoms (N,;, Npg and
Npq respectively). Npy is the total number of atoms in the plane. All samples of planes
have the same size equal to 100 x 100 AZ.

Zas (A) Ny N Npy Ny Zps (A) Na Nin Npg Npy

—21.363 284 27 297 788 2040 514 0 0 514
—20.881 533 0 0 533 2522 274 2n 303 788
-19.323 792 0 0 792 3.003 49 0 49
—18.841 270 48 305 623 3301 a 0 60 60
—18.062 0 0 174 174 4.080 149 0 o 149
-17.283 269 0 257 526 4.562 827 85 0 912
-16.801 809 33 ¢ 842 5.043 267 0 1] 267
—15.243 393 0 1] 393 5.822 0 0 105 105
—14.761 268 225 299 792 6.601 74 191 292 757
—14.280 211 0 0 211 7.083 591 0 o 591
-12.721 813 81 0 ) 8.641 761 0 0 761
—12.240 272 0 108 380 9.123 261 85 294 640
-11.461 4 0 139 139 9.902 0 0 170 170
-10.682 286 138 305 729 10.681 9 0 196 475
—10.200 662 0 0 662 11.163 07 55 0 862
—8.642 683 0 0 683 12.721 319 0 0 319
—8.160 272 159 298 729 13.203 272 242 n 81s
-7.381 0 0 130 130 13.685 290 ] 0 290
—6.602 276 0 84 360 15.243 825 60 0 885
—6.120 809 84 0 893 15.725 264 0 183 447
—5.638 16 0 0 16 16.504 0 0 148 148
—4.859 0 0 8§ 8 17.283 276 107 310 693
—4.562 168 0 0 168 17.765 T 0 ] 757
—4.080 215 232 300 807 19.323 602 o 0 602
~3.598 420 0 0 420 19.805 297 184 250 7
—2.040 820 22 0 842 20.584 0 ¢ 115 115
—1.558 273 g 2n 550 21.363 282 a 5 287
-0.7719 0 U] 184 184 21.845 825 83 0 908
0.000 273 25 304 602 22326 127 0 0 127
0.482 97 0 0 797

atoms. In summarizing, two types of clusters are present in the physical structure,
namely a pseudo-Mackay cluster type 1, with a large icosahedron of Mn + Al and
an icosidodecahedron of Pd + Al, and a pseudo-Mackay cluster type 2, with a large
icosahedron of Mn + Pd and an icosidodecahedron of Al. Evidences of a hierarchy
structure are also observed (big pseudo-Mackay of ‘atomic’ pseudo-Mackay, etc.).
The existence of densest planes in the 3D structure may be evidenced from planar
projections of the structure. This may be obtained either analytically, using the 6D
image [46,47], or by computing the Fourier transform of all structure factors lying
in a reciprocal plane, since the Fourier transform of a cut is a projection. Structure
factors deduced from x-ray data, together with phases of the spherical model, were
used for computation of the twofold projection shown in figure 9(a). When looking
at this projection at glancing angle, serics of lines corresponding to atomic planes are
clearly visible. Densest planes are characterized by larger spacing. They are found
perpendicular to a fivefold axis. Twofold planes are also visible but they are closer
to each other and contain a smaller density of points. Since x-ray structure factors
were used, the plots in figure 9 may be compared, in a first approximation, to high-
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Figore 10. A series of six successive dense atomic planes perpendicular to a fivefold
axis. The level of each plane is indicated and can be compared with table {. Atomic
species are indicated: =, Al atoms; &, Pd atoms; @, Mn atoms. Some fivefoid rings
comresponding to external shells of pseudo-Mackay icosahedra have been outlined.
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resolution electron microscopy images. A projection along a fivefold axis is shown in
figure 9(b).

Two-dimensional cuts of the 3D structure, perpendicular to a fivefold axis and
made at different levels along this axis, are pictured in figure 10. A systematic
search of the very dense fivefold planes has been carried out. As a result of quasi-
periodicity, all planes are in principle different. However, within very small changes
in composition and local order, there is only a finite number of different dense
atomic planes to be considered. Each ‘type’ of plane has a similar local order and
a chemical composition lying between two close values. All characteristics of dense
planes lying in a box of 100 x 100x 50 A® are gathered in table 1. The coordinates Z
along the fivefold axis for each plane and the number of Al, Mn and Pd atoms are
indicated. For instance, planes located at Z,; = —20.881, —15.243, —3.598, 2.040,
7.083, 19.323 A are all belonging to the same family and containing oaly A} atoms.
Similarly planes located at —21.363, —14.761, —4.080, 2.522, 13.203, 19.805 A belong
to another family and contain Al, Mn and Pd atoms. The largest ‘gap’ between two
successive planes is found to be equal to 1.56 A (for instance planes at 0.482 A and
2.04 A). Some planes are corrugated and consist of one dense plane sandwiched
between layers located 0.5 A apart (for instance plane at 4.562 A, with two lower-
density planes located at 4.08 and 5.043 A, table 1). Details of the local order will
depend on the precise shape of the different atomic surfaces, but the stacking of
dense planes is a robust property, which mainly depends on size and average shape
of the atomic hypersurfaces.

This description implies a number of straightforward consequences, which may be
analysed as follows. In the bulk of the cleaved single quasi-crystals, microholes were
observed. These microholes are facetted, with their largest facets perpendicular to a
fivefold axis. The most probable equilibrium shape deduced from these observations
is the regular Archimedean {4,6,10} polyhedron [32]. The fivefold facets of this
polyhedron are the largest. Similarly to what was found in AILiCu icosahedral phase
[13], equilibrium facets of quasi-crystal may be explained along rules reminiscent of
those applied for crystals, ie. facets are assumed to develop along planes of the
highest density. The large distance between fivefold planes is also consistent with
the observed easy cleavage, which occurs mainly along the fivefold axes [32]. It is
likely that the very different atomic decoration of different planes is important for the
stabilization and propagation of the icosahedral order. This description also allows
the following prediction to be made, concerning dislocations induced when a strain
is applied: if dislocations are mobile, the slip plane should be fivefold plane (densest
plane), and the Burgers vector should be perpendicular to a twofold direction, which
is the direction of highest density in the fivefold plan following rules usually employed
in the analysis of crystal defects. The 6D value of the Burger vector may even be
calculated and should correspond to the smail lattice spacing that is evident from
figure 10.

6. Conclusions

The present single-crystal study has been carried out with single grains of the perfect
AIPdMn icosahedral phase, using both x-ray and neutron diffraction. Owing to the
large differences between neutron and x-ray scattering lengths of the three elements,
information on the chemical order has been obtained. Using the 6D crystallographic
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approach, it has been found that there are six different atomic hypersutfaces,
which are described by a first-order spherical model, in reasonable agreement with
diffraction data. The superstructure on the primitive lattice is concluded to be due to a
strong chemical ordering, since all palladium atoms contribute to atomic hypersurfaces
located at one of the lattice nodes and one of the body-centre sites. The average
structural order of the AIPdMn quasi-crystal, in common with those of the i-AIMnSi
and i-AlCuFe phase, exhibits a similar diffraction pattern, and corresponds to a large
atomic hypersurface centred at nodes of the 6D cube. Although the proposed crude
model is only a first-order approximation, it corresponds to a minimum ‘hard core’,
which will be common to all other possible models. The resulting 3D structure may
be described by a quasi-periodic arrangement of icosahedral atomic clusters: the
external shell of the Mackay icosahedron is observed, with two kinds of chemical
decoration generating the superstructure. It is interesting to consider the structure
in terms of dense atomic planes, ie. a series of different atomic planes, in which
each set of planes has about the same local environment and chemical composition.
These planes are quasi-periodically stacked perpendicular to a fivefold axis. The
existence of these planes is argued here to play an important role in quasi-crystal
growth, and also in the possible formation and motion of dislocations. The next step
in the structure determination will obviously be to find a more precise shape for
the six different atomic surfaces. A guideline for this search is that in the chosen
model unphysically short distances must be absent, which will lead to facetted atomic
surfaces. The use of the set of atomic surfaces recently proposed by Katz [16], and
which obey the closeness condition, may also facilitate this search. In this perspective,
precise measurements of density and chemical composition are important and should
give rise to specific constraints on sizes of the atomic hypersurfaces, such as those
proposed by Kalugin [15, 48].
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