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AbstmcL Perfect single grains of the AlPdMn icosahedral phase have k e n  used for 
structure determination by x-ray and neulron diffraction. Owing to lhe large difference 
between x-ray and neulmn scatlering facton, information is gained on the atomic 
positions of lhe lhree elemenb. A madel is proposed as deduced fmm a six-dimensional 
(m) Pauemn analysis. Six different atomic hypersurfaces are loclted on node and body- 
centre sites of the 6D lattice. The superstruaure that leads io R hce-centred lattice is 
mainly due to a slmng chemical ordering, all the palladium being on lhe even node and 
add body oenlre of the a, cube. The resulting ID structure mntains icosahedral ClUSLem 
similar to the txtemal shell of the Mackay imsahedmn, vvllh WO kinds of chemical 
dcmmtion. The ~ t r u c t m ~  may also be described via a quasi-periodic stacking of fivefold 
planes. Each se1 of planes is characterized by an average chemical composition and 
local order. This kind of description helps in lhe understanding of quasi-cryslal growth, 
formalion of dislocations and dynamic pmperties. 

1. Introduction 

Quasi-crystals are new types of solids that defy previous standard classifications. They 
are neither periodically ordered, like ordinary crystals, nor disordered or amorphous 
solids. They have a well defined, discrete goup symmetry, like crystals, but one that 
is explicitly incompatible with three-dimemianal (3D) periodic translational order (e.g. 
exhibiting five-, eight-, or 12-fold symmetry axes). Instead, quasi-crystals possess a 
novel kind of translational order known as quasi-periodicity. 

Atomic order is best defined in terms of the Fourier transform of the mass density 
of the solid. In an ordinary crystal, this transform can be written as a Fourier series: 

p( G) exp(iG . r ) .  
1 

p ( r )  = - 
V G  
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The set of wavevectors G define a discrete reciprocal lattice in which each wavevector 
in the sum can be written as an integer linear combination of hree ‘basis’ vectors a: 

G = ha; + ka; + la; 

The a: are integer linearly independent, which means that G = 0 if and only if all 
the h, k,  1 = 0. The a: are said to span the reciprocal lattice. They are related to 
the ‘basis’ Vectors a;  that define the unit cell of the crystal in physical space: 

i f i + j  
i f i = j .  

In a quasi-crystal, the Fourier transform of the mass density is also a Fourier 
series and the wavevectors in the Fourier sum also form a discrete reciprocal lattice. 
However, the number of integer linearly independent basis vectors required to ‘span’ 
the reciprocal lattice exceeds the spatial dimension, and the point symmetry of the 
reciprocal lattice is incompatible with periodic translational order. For example, six 
basis vectors are required to span the reciprocal lattice for three-dimensional quasi- 
crystals with icosahedral symmctry: 

G = n,a; + nza; + n3a; + n4a; + n5a; + n6az (3) 

where the a: can be selected to point along the fivefold axes of an icosahedron. In a 
well chosen cubic coordinate system (i.e. three twofold axes) the a? vectors are of the 
form ( f l ,  f ~ ,  0) (and permutations) with r = ( 1 + 6 ) / 2  = 2 ~ 0 ~ 3 6 ~  = 1.618034 ... 
the golden mean. Thus, all the vectors G have cubic coordinates of the form (h+ rh’, 
k + Tk’, 1 + ~ 1 ’ )  with h, h‘, k, k‘, 1, 1’ integral numbers (selected within extinction 
rules). This is the simplest possible definition of a quasi-crystal. The dense reciprocal 
space of a quasi-crystal as described by equation (3) may be given aperiodic image in a 
high-dimensional space; for instance, equation (3) may be considered as a description 
of a six-dimensional (6D) periodic reciprocal lattice whose Fourier transform would 
generate 6D periodic mass density distribution. Projection and cut operation will then 
relate the ohysical 3D description to its 6D image. 

As a consequence the atomic structure of icosahedral phases is now best 
understood via a 6~ crystallography approach [l-31. In this scheme, the conventional 
tools of crystallography, such as Patterson analysis, can be used in the analysis (for 
a review see [4-71). It has been shown that the most natural way of analysing such 
diffraction data is the so-called cut method, as proposed by Bak [SI and Janssen [9], 
and first applied by Gratias el a1 [lo]. Hereby the periodic image space is decomposed 
into two subspaces, i.e. Epr, the physical space, and E,,,, the complementary 
space. The quasi-crystalline structure is defined by a set of atomic hypersurfaces 
that decorates the 6~ cube. The purpose of any structural determination thus reduces 
to (i) locating the different atomic hypersurfaces and (ii) determining their precise 
volumes and shapes. However, atomic hypersurfaces are not point-like objects and 
would require the determination of an infinite number of parameters in order to be 
completely specified. A first simplification comes in if contrast variation is feasible, 
which allows the partial atomic correlations to be disentangled from each other [ll- 
131. But additional constraints must be also injected into models. The first of these, 
which is trivial, is atomic density, along with chemical composition and unphysically 
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short distances in physical space, which have to be avoided. This already limits the 
set of possible solutions to variation around a common hard core, which represents at 
least *!XI% of the total structure. Further additional constraints may originate from: 
(i) forcing the frequency of a selected cluster to a maximum as in the i-AIMnSi model 
proposed by Duneau and Oguey [14]; and (ii) the so-called closeness condition, which 
prevents the annihilation-creation of atoms under phason-like translation [15,16] (as 
in the i-AlCuFe model proposed by Cornier-Quiquandon el af [17]). 

Following considerations on possible growth mechanisms of quasicrystals, it 
has been suggested that real quasi-crystals should be described by random tiling 
models (as opposed to the perfect quasi-crystal description). Phason fluctuations 
(eorresponding to tile rearrangements or atomic jumps) would result in structures 
entropically stabilized at high temperature [1%20]. In such models, sharp B r a g  
reflections are still present, but phason fluctuations cause diffuse rings around peaks, 
whose intensity scales with QpV. A systematic measurement of the weak diffuse x-ray 
scattering around strong Bragg peaks of an annealed AlCuFe single quasiclystal has 
been done recently hy Mori el a1 [21]. They did not find any Q,,dependent diffuse 
scattering, which implies that phason fluctuations, if any, are very small. 

The best candidates for structure determination from diffraction data are the 
recently discovered phason-free, ‘perfect’, stable quasi-crystals AlCuT (T = Fe, 
Ru, Os) and AlPdT (T = Mn, Re) [22-241. The width of the Bragg reflections, 
when measured on a high-resolution diffractometer, is limited only by instrumental 
resolution and does not show the broadening expected from quenched-in phason 
strain [25-271. 

This paper reports on a single-crystal x-ray and neutron diffraction study of the 
i-AIPdMn phase. Contrast variations on Mn sites have previously been measured with 
powder neutron diffraction techniques, leading to positions and raw shapes of atomic 
surfaces corresponding to (AIPd) versus Mn atoms (281. However, powder samples 
do not allow one to measure properly the degenerate reflections (having the same 
IQI, but different orbits). Moreover, distinction between AI and Pd sites is difficult 
in measurements made by neutron diffraction, owing to similar scattering lengths of 
Al and Pd. The use of both x-rays and neutrons is particularly attractive, since x-rays 
will mainly probe Pd order, whereas neutrons will probe Mn order. The situation is 
similar to the AILiCu quasicrystals, for which models have recently been proposed 
[13,29,30], and much more favourable than for AIFeCu, for which only weak contrast 
effects can be. expected [17]. 

2. X-ray data 

Large single grains of the AlPdMn icosahedral phase were obtained by the 
conventional Bridgman growth technique [27]. Spherical grains with approximate 
radius of 140 p m  were cut and set on the tip of a glass fibre for the purpose of single- 
crystal x-ray diffraction measurements. The sample was fully characterized to be of 
perfect quasi-crystallinity, i.e. without any detectable quenched-in phason strain, and 
single phase. The composition was determined by electron probe analysis and found 
to be equal to Al,,,,Pd2,,,Mn,,, [27]. The measured density is 5.1 (2~0.2) g 
Figure 1 shows typical x-ray h u e  transmission diffraction patterns taken along the 
twofold, fivefold and threefold directions. 

Data collection was performed with a Nicolet four-circle diffractometer equipped 
with a molybdenum x-ray tube (A = 0.7107 A). Integrated intensities were collected 
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Figure 1. Tmnsmission x-ray h u e  diffraction 
pattem obtained with a single AlPdMn icosahedral 
grain (moiyhdcnum lulx). (0)  Twofold. ( b )  fivefold 
and (c)  threefold zone axis. 

by w scan of the Bragg reflections. A total of h00 reflections were measured in the 
asymmetric unit, 360 of which with intensities I greater than twice the standard deviation 
U ( [ ) .  The region of reciprocal space scanned corresponded to Qp, up to 10 A-' and 
QpeT up to 1.5 k', with an almost constant resolution equal to 0.08 A-' [31]. 

A subset of 120 reflections was selected in order to check their equivalence under 
the icosahedral p i n t  group: fluctuations beyond statistics were not observed, except 
[or a few cases for which absorption, extinction and/or multiple scattering effects may 
he involved. The li, scans, in which the sample is rotated around the reciprocal vector, 
did not show either any fluctuations greater than the statistical Ones. Laue (if any) 
and fluorescence effects were accounted for by subtracting a flat background under 
each pcak. Integrated intensities were then corrected for absorption and Lorentz 
polarization. A short report on part of these x-ray data has been presented previously 
and is being published in conference proceedings [31]. 

3. Neutron data 

3.1. Single-ciystnl dma 

An ingot with nominal composition AI,,PdZ,Mn, was prepared from the pure element 
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in a plasma jet furnace. It was then sealed in a quartz cell and annealed for 3 days 
at 8oo°Cc, and then quenched in liquid nitrogen. The annealed ingots were crushed 
into two or three pieces. It was observed that the specimens showed a crystal-like 
planar cleavage, and the newly obtained surfaces were flat and had a mirror-like 
reflectivity. Electron channelling patterns (ECP) showed that the cleaved surfaces are 
usually normal to a fivefold axis. However, surfaces normal to a twofold axis or to 
a threefold axis were also observed. The single quasi-crystal selected for neutron 
diffraction measurements is presented in figure 2(a). The surface obselved is normal 
to a fivefold axis as indicated by ECP (figure 2(6)).  Along the line underlined hy two 
arrows in figure 2(a) the quasi-crystal unit was separated from the rest of the ingot 
by cleavage. The orientation of the newly obtained flat surface was determined by an 
ECP and was found to be normal to a twofold axis (figure 2(c))  [32]. 

Figure 2. (U)  E M  microgcrpli of large Al-Mn-Pd 
single quasi-clystals. Scab har 1 mm. Arrows mark 
grain laundaq. (b) Elcctron channelling pattern 
normal 10 fivefold .?xis. Scale har mrresponds to 
an angle of 5'. (c) Electmn channelling pattern 
normal to twofold axis, obtained on the surface 
after cleaving the ingol along the line indicaled ly 
arrows in (a). Scale b r  corresponds to an angle of 
4.3- 

Four-circlc neutron diffraction data were collected at  the 5C2 instrument located 
on a hot beam o l  the Orphie Reactor (LCon Brillouin Laboratory). The beam is 
monochromatized to X = 0.8308 8, with a Cu [ 2 2 0 ]  monochromator. A systematic 
search for Bragg reflections did not show any subsidiary grains. 

The data collected correspond to w scans between 5' and 30' and to w - 20 
scans for angles greater than 30" (Q,,, < 11.8 A-' and Q,,, < 0.95 A-'). The 
resolution is almost constant and equal to 0.08 A-'. A total of 434 Bragg reflections 
were measured in the asymmetric unit. A subset of 192 peaks have intensities greater 
than 2 4  I). Each reflection was mcasured three times by application of the threefold 
rotation; fluctuations greater than the statistical ones were not detected. 

3.2. High-rc.solution powder diffraction data 

An ingot with nominal composition Al,,Pd,,Mn,, was prepared by induction melting 
and solidified in a water-cooled crucible. The ingot was then ground into a fine 



10154 M Boudard a a1 

powder for the purpose of high-resolution powder neutron diffraction measurements. 
Data were collected at the Intense Pulsed Neutron Source (ISIS, Rutherford Appleton 
Laboratory) on the time-of-flight HRPD diffractometer. The apparatus was set in 
back-scattering configuration resulting in a constant AQ,,/Q,, resolution equal to 
O.OOO8, i.e. one to two orders of magnitude better than for the above four-circle 
experiment. The accessible Q,, ranged from 1 to 12 A-'. Advantages of powder 
diffraction are twofold: 

(i) All the reciprocal space is scanned, which allows one to check that no 
reflection was missed when performing the four-circle experiment. In fact scanning 
systematically all the reciprocal space is impossible in a four-circle experiment, owing 
to the reciprocal space of an icosahedral structure being densely filled. Practically 
only those reflections which have a QFV value lower than a threshold are effectively 
measured in a four-circle experiment. 

(ii) The high resolution allows one to make accurate measurements of possible 
quenched-in phason strain. 

A typical powder diffraction pattern is shown in figure 3. All the peaks can be 
indexed according to the scheme proposed by Cahn et a1 [33] and have effectively 
been measured in four-circle experiments. The peak widths are slightly larger than 
the instrumental resolution, but do not show any obvious QFV dependence (figure 4). 
By contrast, similar samples obtained by the melt spinning technique exhibited a very 
strong QpT dependence. Peaks were fitted by pseudo-Voigt functions convoluted 
with the instrumental resolution, using the lsls software package [34]. Owing to the 
very good resolution and the large Q-range accessible, the integrated intensities of 
106 reflections were measured, which wrresponds to 171 independent reflections. 

Finally, it has to be emphasized that, for all experimental data presented here, 
&,,,-dependent diffuse scattering was not observed and the linesbape of Bragg 
reflections did not depend on QpV in any of these neutron and x-ray experiments. 
This means that, even if this quasi-crystal is of a random tiling type, pbason 
fluctuations are small enough for a description in terms of a perfect quasi-crystal 
to be completely adequate. 

4. From diffraction data to the six-dimensional structure 

The first step in diffraction data analysis consists of finding the Bravais lattice and the 
unit-cell parameter. As already shown for AlCuFe [35,36] and AlPdMn samples [37], 
the reciprocal lattice is body-centred. The indices fall into two categories, i.e. all odd 
Or all even 6~ indices. However, the intensities of Bragg reflections corresponding to 
all odd indices are weak, so that the reciprocal space is best described by a primitive 
cubic lattice with a set of superstructure reflections with their indices all half-integers 
[36]. This corresponds to a primitive cubic unit cell in direct space with a parameter 
a = 6.451 84 and two families of lattice nodes, even or odd, where the parity refers 
to that of the sum of the six corresponding coordinates. The superstructure is induced 
by small differences in atomic hypersurface shapes, volumes and/or chemical species 
involved. No other extinction than the one originating from the BCC reciprocal lattice 
has been observed, so that the space group is either F7n3 5 or F235 (centrosymmetric 
Or non-centrosymmetric) (381. In the following, lattice nodes of interest are going 
to be labelled n, and ni, with hD coordinates [000000] and [ l O O O O O ]  respectively. 

' 
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I 
5 6 7 8 . 9  10 11 

0 (K’)  

Figure 3. High-resolution powder diffraction paltern. M a i n  B r a g  reflections are indexed 
following the indexing %heme proposed by Clhn el d (331. 

Body-centre sites with 6D cordinates l[l 1 11 1 11 and t [I 11 11 i] will also be given 
labels, Le. bc, and bc,, respectively. 

4.1. The sir-dimensional Palferson anaiysb 

As for any periodic distribution of density, the 6~ Fourier transform of the peak 
integrated intensities measured with quasi-crystals gives a 6D Patterson function. It 
corresponds to the autocorrelation function of the time-averaged density. For a 
monatomic system, one can write 

I ( Q )  = l 4 Q ) I 2 I ~ ( Q ) I 2  (4) 

where u ( Q )  is related to the interaction mechanism between one atom and the 
radiation used. For instance 1u(Q)I2 is the atomic scattering factor (or form factor) 
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Figure 4 Enlarged pall of figure 3, showing Ovo Bragg reflections wilh their QVrp value 
in a 3 1  ratio. There i-, n o  significant broadening. 

f for x-rays and the scattering lcngth 6 for neutrons. F ( Q )  is the structure factor, 
related to the Patterson function P(r) via the expression 

IF($)IZ= / P ( r ) e x p ( - i Q . r ) d ~  

with 

Here N is the number of atoms in the sample, p ( r )  the mass density function, and 
* means convolution product. 

In a polyatomic system, partial Patterson functions can be defined in a similar 
Way: 

Pi; (?)  ~I = - it, J / p , ( r ) p : ( r ’ + r ) d r ’ =  bJO)*pj(r)) .  (6) 

Then, the Fourier transform of the peak integrated intensities is a linear combination 
of the Pi,(r), weighted by the product fifj  (for x-rays) or bib, (for neutrons). This 
weighted sum of the partial Patterson functions is usually referred to as the ‘total 
Patterson function’ (TPF). The bi are cnnstant parameters but the x-ray atomic form 
factors are Qdependent. This is crudely accounted for by normalizing the x-ray 
integrated intensities to the mean square value of the atomic form factor defined as: 

1 

where ci are concentrations of the atomic species in the material. Conclusively, the 
Fourier mansfoms of the intensities of the x-ray (neutron) diffraction peaks properly 
indexed in the 6D scheme @ve a set of l P F  such as: 
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(firj for x-rays, 6i6j for neutrons). 
Figure 5 reproduces a planar slice of 60 TPF examples, containing WO fivefold axes 

taken in the physical 3D space for one and in the complementary space for the other. 
The TPF features appear as traces, elongated on the perpendicular space axis. Their 
actual width in the physical space is mainly due to truncation effects in the Fourier 
transform procedure. These observations hold true for any 2~ slice of the 6D TPF, 
which means that the TPF features are basically 3~ full ‘objects’ in the perpendicular 
space, with point-like intersection with the physical space. These TPF ‘objects’ have 
centres that are located at four positions only, namely n,,, n,, bc, and bc, (see 
figure 5). This corresponds to atomic hypersurfaces whose centres can also only be 
in positions n,,, n, ,  bc,, and bc,, i.e. at points with very high symmetry in the 6~ cubic 
lattice. This solution is centrosymmetric, although in principle Patterson functions 
do not give information on whether the structure is centrosymmetric or not. It just 
happens here that the only structural solution compatible with the measured TPF is 
a centrosymmetric one, in agreement with contrast variation effects [28]. lb be fair, 
the point k not universally accepted. Recently, Lee et a1 [39] have measured directly 
the phase differences of the structure factors, using dynamic Renninger effects, on 
an AlCuFe sample whose atomic structure is similar to that of AIPdMn. Their result 
deviates significantly from a centrosymmetric solution. (It has to be noted, however, 
that the theoretical treatment used by these authors may not be applicable to quasi- 
crystalline cases.) A possibility might be that the shape of the atomic hypersurfaces 
is not centrosymmetric: this cannot be ruled out by the Patterson analysis, but the 
non-centrosymmetric character, if any, can be only very weak. 

Looking back now at equation (7), it can be expected that TPF reflect mainly 
the density distribution related to atoms with strong fi(6;).  In the present case, 
TPF obtained from x-ray data are certainly reflecting palladium distribution in the 
structure, since Z, = 46 compared to Z,, = 25 and 2, = 13. The TPF obtained 
from neutron data are not very sensitive to Pd versus (AI, Mn) order but heteroatomic 
correlation with Mn has a negative contribution to the TPF owing to its negative 
scattering length (bMn = -0.373 while 6, = 0.3449 and 6, = 0.591 lo-’* an). 
This is actually exemplified with profiles of the density-density correlations, resulting 
from planar cuts of the VF in the perpendicular space and illustrated in figure 6. 
These profiles show clearly that the TPF maxima centred at nu, n,, bc, and bc, result 
from large atomic hypersurfaces centred at n,, and n,, plus small atomic hypersurfaces 
centred at bc, and bc, (281. Some chemical order effects appear in slope changes 
(figure q b ) )  for profiles of the TPF maxima, which are deduced from neutron data: 
the inner core of atomic hypersurfaces’located at n,, and n, corresponds to manganese 
atoms while an outer shell contains the contribution from Al and/or Pd. Moreover, 
a large difference in density-density correlations between n, and n, TPF maxima 
shows up when obtained from x-ray data (figure 6(a)); it is consistent with the Pd 
atoms contributing to the outer shell of the atomic hypersurface but not to the 
n, one. The large density-density correlations showing up at the bc, position in the 
TPF deduced from x-ray data indicates that Pd atoms contribute also to the atomic 
hypersurface located at bc, [31]. These results, together with the powder neutron 
contrast variation experiment [28], where the size of the Mn atomic surfaces has 
been determined, lead to a crude model that is described in the following section. 

4.2. A crude niodelling 
Reasonably founded information about the size of the different atomic hypersurfaces 
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Figure I Rational cut of the 6D Pallemon 
function, in a plane conlnining a fivefold axis in 
both the physical and !he perpendicular space, as 
deduced f" singleclystal x-ray (0) and neutron 
(b) diffraclion data. n l e  primitive "nil cell is 
outlined. 

E T  bl 

: 
~. ~ ~.~ 

c .'>, ,,' .\ 
--_: 

\\ <, 
\ > - U  

-20 -iD 1* ,A) 20 
LO.O.llL 

. .* .* ; _ . _ -  

Figure 6 Profiles of the various Pallenon density 
fcaturcs on wen (-) or odd (. . . . . .) lattice 
nodes, and on even (----) or odd (- . -) body 
centres as deduced from x-ray (a) and neutron (6) 
dala. I h e  large difference klween odd and even 
lattice-node profiles obtained fmm x-ray dala is due 
lo chemical ordering, Pd k i n g  located on no. 

may result from models using balls and spherical shells. Actually, at small values of 
Qppp ,(i.e. smaller than 0.5 A-'), the Fourier transform of an atomic hypersurface 

is illustrated in figure 7, where the Qppp dependence of the amplitude of the 
structure factor IF( Q)I (square root of the intensity, corrected for absorption, 
Lorentz polarization and Debye-Waller factor) is shown. Had we had to consider 
one single atomic hypersurface in the 6D structure (simple cubic primitive lattice) 
F ( Q )  would have been proportional to C(Q,,), the Fourier transform of the 
atomic hypersurface. It is a smooth decaying function at low values of QFv. In the 
present case, several (say n) atomic hypersurfaces have to he considered and we must 
express F( Q )  as 

- .  k i imiiij  hi i i "e i i4  by i i ~  &e i i u i  r i ~ e ~  rivi ricpciilj uti iis praise shape. i n s  

n 

R, are the space positions of the centres of the atomic hypersurfaces in the 6D 
cubic unit cell; 6 ,  is for neutron scattering length and must be replaced by f, when 
x-rays are concerned. The R,-vectors are only 6D lattice vectors (nu, n,) of 'half' 
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6D lattice vectors @q,, bc,). The &-vectors correspond to the B r a g  peaks indexed 
in the 6D reciprocal space. They belong to two principal families, corresponding 
either to primitive (strong) reflections with all integer indices (even reflection such 
as (000000) or odd reflection such as (000001)) or to superstructure (weak) 
reflections with all half-integer indices (integers are again either even or odd). The 
parity on the reflection indices is transferred to the Q,, and Q,, modulus via the 
parameters N and M ,  as defined elsewhere [17,33]. The consequence of R, and 
Q having special forms is that exp(-iQ . R I )  in equation (8) takes only values zkl. 
Thus, rewriting C, = b,G,(Q,,) for brevity, equation (8) has the general form 

(9) 

(Each C, contains possibly several contributions if the global atomic hypersurfaces 
at position RI have to be decomposed into component volumes corresponding to 
different atomic species.) There are only four alternatives for equation (9), ie. 1171: 

(i) wen primitive reflections F ( Q )  = +C, + C,, + Cbc0 + Ck I '  ' 

(ii) odd primitive reflections F ( Q )  = +C., + Cnt - C,, - C,,,,; 
(iii) even superstructure reflections F ( Q )  = +C., - CO, + C,, - C,,; 
(iv) odd superstructure reflections F ( Q )  = +C, - CO, - C,, + Cbc,. 

Thus, the Q,, dependence of the structure factor splits into four families as shown 
in figure 7. Four such branches have been observed previously with AlCuFe single- 
crystal data [17] and AIPdMn powder data 1281. The next step in the interpretation 
of the data is to fit the low-Q,, parts of these four branches with C,(Q,. ) 
functions (equations (8) and (9)) corresponding to balls and/or spherical sheds. 
As a first approximation, atomic hypersurfaces have been supposed to lie in the 
perpendicular space. This hypothesis is compatible with the observed PF whose 
traces in slices (figure 5) of the 6D space appear to be confined in 'cigar-like' shapes 
along an axis in perpendicular direct space. One should note, however, that a small 
parallel component (i.e. lower than 0.6 A) would hardly be recognized on a density 
or Patterson map because of smearing truncation effects 1401. Within density and 
chemical composition constraints, the best fit to low-Q,, data of the four F ( Q )  
branches was obtained with atomic hypersurfaces defined as follows: 

(i) A core of Mn (radius 0.83a, where n is the parameter of the 6~ cube) 
surrounded by an intermediate shell of Pd (extending up to 1.26n) and an outer shell 
of AI (up to 1.55a) centred at n, position. 

(ii) A core of Mn (radius 0.52a, about 1.6 times smaller than the one on the 
node) surrounded by a shell of AI (up to 1.64n, i.e. larger than the n, one) but 

(iu) A ball of Pd (radius 0.71n) at bc, position. 
(iv) A small ball of AI (radius 0.311) or an empty volume at  bc, position. (The fit 

did not show differences between these two hypotheses since the AI volume involved 
is very small.) 

Such a crude spherical model is found to fit the data relatively well and results 
in residual R-factors of 9% for x-ray and 16% for neutron data when considering 
reflections with Q,, < 0.5 A-l. Such R-factors would be considered as relatively 
p r  in classical nystallography. But there are actually no published models that, 

without palladium, centred at the n, position. 
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Figure 7. Qprp dependence of the SImclure facton for x-ray (a, b) and neutron (c ,  d) 
dam. X-ray data were normalized to the mean value of the atomic scattering factor 
(which is Q,,dependent), and both &la were mrrected Ly a mean Debye-Waller 
factor. In b l h  cases each set of primitive reflections (a), (c), corresponding (0 N = 2 p  
decomposes in lwo branches according to the parity of M (+M even, 0 M odd). For 
supentruelure reflections (b), (d), wrresponding to N = 2p+ I a similar decompilion 
is Seen (0 M even, +M odd). N and M refer to !he indexing scheme proposed bj 
Cahn d al [33] and are directly related to the reflection prily [17]. 

Figure 8. Contour plot of different 
sites olserved in the Patlenon 
function. The representation is in 
lhe perpendicular space. Even and 
add body-cent= sires oblained with 
x-ray (a), (b) and neutron (c), (d)  
&la. Ihe mordinate axes and 
the perpendicular lo the figures are 
lwofold axes in the wmplemenlary 
(pew) space. 

to our knowledge, would better fit x-ray and neutron data altogether. The fit of 
the present crude model to high-order weaker reflections appears to be not that bad 
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(R-factor of 11% and 20% for x-rays and neutrons respectively). Clearly, to improve 
the fit to both low- and high-order reflections, facetting of the atomic hypersurfaces 
has to be introduced. This search may somehow be guided by the shape of the 
TPF maxima when looked at in perpendicular space. In some cases this function 
exhibits visible facetting (figure 8). In principle the shape of the density-density 
correlations b complicated since it originates from the self-overlapping of different 
atomic hypersurfaces with different weight corresponding to the scattering length of 
the atom. However, in the present case, as noticed by Cornier-Quiquandon d al 
[17], the relatively small atomic hypersurface located at the body-centre position acts 
as a probe. When looking at the body-centre density4ensity correlation, in the T F  
map, information is mainly obtained about the shape of atomic hypersurfaces sited 
at n,, or n,. This probe is more efficient when the scattering lengths of elements are 
close to each other, as is the case for neutron diffraction data where bA and b, are 
closer to each other than with x-rays. Etfectively, a facetting is seen in figures S(c) 
and (d), where in one case there is a bump along the fivefold axis and a depression 
along the threefold axis as for an icosahedron, whereas in the other case contours 
are reminiscent of a triacontahedron. This is probably an indication of differences in 
the external shape of the WO n,, and n, atomic hypersurfaces similar to those in the 
AlCuFe quasi-crystal [17]. 

Pushing the interpretation of the facettings exhibited in figure 8 to its extreme, it 
is probably tempting to suggest that: 

(i) The atomic surface corresponding to the Mn core at q, position has a 
triacontahedral shape. 

(ii) The Mn core is a dodecahedron at n, position. 

But this is only very tentative and must be confirmed further in the future. 
An alternative approach is to fit the data with atomic hypersurfaces that are 

composed by superimposing spherical harmonics of icosahedral symmetry [41]. It has 
been applied successfully to our diffraction data measured with AlCuLi quasi-crystals 
[13]. This looks very promising and is in progress for the present system. 

For comparison, the present data were also confronted with three other types of 
models, in their simplified ‘spherical’ version: 

(i) A modified Duneau-Oguey description [14]. The main difference concerns 
small atomic surfaces that are located at the midedge of the 6D cube. 

(ii) A structure similar to that found experimentally for the AlMnSi quasi- 
crystal [12]. In both models the atomic surfaces have identical external shell on 
I+, and n, lattice nodes and a relatively small body-centre atomic surface. The FCC 
superstructure has exclusively a chemical origin. 

(iii) A model similar to that proposed for AlCuFe quasi-crystal, where 
superstructure originates from both chemical and crystallographic order [I?. 

Globally, these three descriptions are less adequate than the previous one. Models 
(i) and (ii) exhibit a too-small bodysentre site when compared to Patterson functions, 
whereas model (iii) induces too weak a mass density (0.060 atom/A3 instead of 0.066 
atom/A3). 

The density problem in (iii) has recently been corrected [42] in a modified model. 
It may fit closer to the present data. 

Isotopic substitution on Cu and Fe in AlFeCu quasi-crystals [42] has also shown 
some evidence of chemical order that compares reasonably well with the one proposed 
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in the present work for AIPdMn. Iron contributes to cores of atomic hypersurfaces 
sited at n, and n, positions. Shells of copper appear at n,,, but also at n,, and there is 
a ‘ball’ of copper at bc,. Outer shells of Al are visible at n,, and n,. The position bc, 
is unoccupied. The AI shells are partially mixed with iron. Conclusively, differences 
with the present analysis mme from (i) AI-Fe partial disorder while AI-Mn are not 
mixed, (ii) Cu cores are sited at both n,, and n, while Pd is only at n,, and (iii) Fe 
cores have equal sizes at n,, and n, while Mn cores have not. 

Finally, it is interesting to  wonder how far such a spherical model is from the 
‘true’ solution. As has been pointed out repeatedly, since atomic hypersurfaces need 
an infinite number of parameters to be completely specified, there will be an infinite 
number of models fitting equally well the Same (finite) set of data. However, models 
must have a “ n o n  ‘hard core’, which represents a t  least 8043% of the total 
number of atoms 17,431. This is mainly due to the constraint imposed by composition 
and density. The 6D space is widely open but positioning atomic hypersurfaces that 
reproduce the experimental atomic density and avoid short distances forces solutions 
in which atomic hypersurfaces are in contact. This strongly restricts the degrees 
of freedom for modelling. Finally, fitting low-Q,, data may be viewed as a ‘low- 
resolution’ image of the icosahedral structure, whereby the term ‘low-resolution’ refers 
to perpendicular space. This is reminiscent of current methods of modelling applied 
in biology for structure determinations of large proteins. 

The AlPdMn icosahedral phase belongs to one of the two icosahedral families 
that are characterized by large atomic hypersurfaces at the lattice node in 6D cubic 
image and by small ones at the body centre. The main result of the present study 
has been to specify where the different atomic species are in these two families of 
atomic hypersurfaces and to give a ‘low-resolution’ image of the structure. 

5. About the resulting three-dimensional structure 

As a result of the previous discussion, it is interesting to look at what are the ‘basic’ 
or ‘hard core’ features when generating the 3D structure as a cut through the 6D 
image. Following what has been done with the AlLiCu quasi-crystal [14. we may 
seek local icosahedral clusters. or alternatively we can describe the structure in terms 
of dense atomic planes. This is of particular interest for considerations on crystal 
growth, dislocations and also physical properties of the quasi-clystalline phase, such 
as vibrational states and the electronic structure. 

The nature of icosahedral clusters that exist in the 3D structure can be found 
following the procedure proposed by Duneau and Oguey [14]. Comparing the sphere 
sizes of interest with Duneau-Oguey atomic hypersurfaces, it can be shown that the 
external shell of a Mackay icosahedron is actually present in the structure. In the 
i-AlMnSi phase, the Mackay icosahedron decomposes into three shells, namely a 
small Al icosahedron, a twice larger Mn icosahedron and an Al icosidodecahedron 
(30 atoms along twofold directions) [44,45]. In the AlPdMn icosahedral phase the 
internal small icosahedron is replaced by pieces of an Al dodecahedron. l bo  kinds 
of external shells are found, depending on the parity of the high-dimensional lattice 
node where the cluster centre is sited. In the 6D description the Mn inner core bas 
a radius smaller than the standard triacontahedron; this implies that the resulting 3D 
large icosahedron is occupied by Mn atoms plus a small number of Al or Pd atoms. 
The external icosidodecahedron is made of either Al atoms alone or of Al plus Pd 
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Figure 9. (0) lbofold projection of the icosahedral AlPdMn Stmdure as obtained 
by Fourier transform of the Qpar(Z) = 0 layer of the recipmcal space. m e  map 
shows mntour plots of the electmnic density. Dense mntour regions correspond to 
high electmnic density pmjection. Densest plans show up perpendicular to the Evefold 
direclion. (b) Fivefold projection. 'Ibis may k compared to high-resolution eledmn 
microwapy. 
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lhbk 1. Position and chemical composition of a Series of atomic planes perpendicular 
lo a fivefold axis. The mordinate Z a  (A) of each plane, along this flvefold axis, is 
given, along wilh the mrresponding number of Al, Mn and Pd atoms (NA, .  NM and 
Nw rspedvely).  N m  is the total number of atoms in the plane. All samples of planes 
have the same size equal 10 100 x I00 A'. 
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atoms. In summarizing, two types of clusters are present in the physical structure, 
namely a pseudo-Mackay cluster type 1, with a large icosahedron of Mn + Al and 
an icosidodecahedron of Pd + Al, and a pseudo-Mackay cluster type 2, with a large 
icosahedron of Mn + Pd and an icosidodecahedron of Al. Evidences of a hierarchy 
structure are also observed (big pseudo-Mackay of 'atomic' pseudo-Mackay, etc.). 

The existence of densest planes in the 3~ structure may be evidenced from planar 
projections of the structure. This may be obtained either analytically, using the 6D 
image [46,47], or by computing the Fourier transform of all structure factors lying 
in a reciprocal plane, since the Fourier transform of a cut is a projection. Structure 
factors deduced from x-ray data, together with phases of the spherical model, were 
used for computation of the twofold projection shown in figure 9(a). When looking 
at this projection at glancing angle, series of lines corresponding to atomic planes are 
clearly visible. Densest planes are characterized by larger spacing. They are found 
perpendicular to a fivefold axis. Tbofold planes are also visible but they are closer 
to each other and contain a smaller density of points. Since x-ray structure factors 
were used, the plots in figure 9 may be compared, in a first approximation, to high- 
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[~.1.01,, 
Flgure 10. A series of six SUCCeSSiVe dense alomic planes perpendicular 10 a fivefold 
axis. The level of a c h  plane is indiealed and an br compared with mhle I. Atomic 
species are indicated *, Al aloms; A, Pd atoms; 0 ,  M n  aloms. Some fivefold rings 
corresponding lo pxlemal shells of pseudo-Mackay icosahedm have k e n  outlined. 
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resolution electron microscopy images. A projection along a fivefold axis is shown in 
figure 9(b). 

h-dimensional  cuts of the 3D structure, perpendicular to a fivefold axis and 
made at different levels along this axis, are pictured in figure 10. A systematic 
search of the vely dense fivefold planes has been carried out. As a result of quasi- 
periodicity, all planes are in principle different However, within very small changes 
in composition and local order, there is only a finite number of different dense 
atomic planes to be considered. Each ‘type’ of plane has a similar local order and 
a chemical composition lying between two close values. All characteristics of dense 
planes wing in a box of loOx 100x50 A3 are gathered in table 1. The coordinates 2, 
along the fivefold axis for each plane and the number of Al, Mn and Pd atoms are 
indicated. For instance, planes located at Z, = -20.881, -15.243, -3.598, 2.040, 
7.083, 19.323 8, are all belonging to the same family and containing only AI atoms. 
Similarly planes located at -21.363, -14.761, -4.080, 2.522, 13.203, 19.805 8, belong 
to another family and contain AI, Mn and Pd atoms. The largest ‘gap’ between two 
successive planes is found to  he equal to 1.56 A (for instance planes at 0.482 8, and 
204 8,). Some planes are corrugated and consist of one dense plane sandwiched 
between layers located 0.5 8, apart (for instance plane at 4.562 & with two lower- 
density planes located at 4.08 and 5.043 & table 1). Details of the local order will 
depend on the precise shape of the different atomic surfaces, but the stacking of 
dense planes is a robust property, which mainly depends on size and average shape 
of the atomic hypersurfaces. 

This description implies a number of straightfonuard consequences, which may be 
analysed as follows. In the bulk of the cleaved single quasi-crystals, microholes were 
observed. These microholes are facetted, with their largest facets perpendicular to a 
fivefold axis. The most probable equilibrium shape deduced from these obsewations 
is the regular Archimedean {4,6, IO} polyhedron [32]. The fivefold facets of this 
polyhedron are the largest. Similarly to what was found in AlLiCu icosahedral phase 
[13], equilibrium facets of quasi-crystal may be explained along rules reminiscent of 
those applied for crystals, i.e. facets are assumed to develop along planes of the 
highest density. The large distance between fivefold planes is also consistent with 
the observed easy cleavage, which occurs mainly along the fivefold axes [32]. It is 
likely that the very different atomic decoration of different planes is important for the 
stabilization and propagation of the icosahedral order. This description also allows 
the following prediction to be made, concerning dislocations induced when a strain 
is applied: if dislocations are mobile, the slip plane should he fivefold plane (densest 
plane), and the Burgers vector should be perpendicular to a twofold direction, which 
is the direction of highest density in the fivefold plan following rules usually employed 
in the analysis of crystal defects. The 6~ d u e  of the Burger vector may even be 
calculated and should correspond to the small lattice spacing that is evident from 
figure 10. 

6. Conclusions 

The present single-crystal study has been carried out with single grains of the perfect 
AlPdMn icosahedral phase, using both x-ray and neutron diffraction. Owing to the 
large differences between neutron and x-ray scattering lengths of the three elements, 
information on the chemical order has been obtained. Using the 6~ crystallographic 



AlPdMn quasi-ctystal 10167 

approach, it has been found that there are six different atomic hypersurfaces, 
which are described by a first-order spherical model, in reasonable agreement with 
diffraction data. The superstructure on the primitive lattice is concluded to be due to a 
strong chemical ordering, since all palladium atoms contribute to atomic hypersurfaces 
located at one of the lattice nodes and one of the body-centre sites. The average 
structural order of the AlPdMn quasi-crystal, in common with those of the i-AIMnSi 
and i-AlCuFe phase, exhibits a similar diffraction pattern, and corresponds to a large 
atomic hypersurface centred at nodes of the 6~ cube. Although the proposed crude 
model is only a first-order approximation, it corresponds to a minimum ‘hard core’, 
which will be cnmmon to all other possible models. The resulting 3~ structure may 
be described by a quasi-periodic arrangement of icosahedral atomic clusters: the 
external shell of the Mackay icosahedron is observed, with two kinds of chemical 
decoration generating the superstructure. It is interesting to consider the structure 
in terms of dense atomic planes, i.e. a series of different atomic planes, in which 
each set of planes has about the same local environment and chemical composition. 
These planes are quasi-periodically stacked perpendicular to a fivefold axis. The 
existence of these planes is argued here to play an important role in quasicrystal 
growth, and also in the possible formation and motion of dislocations. The next step 
in the structure determination will obviously be to find a more precise shape for 
the six different atomic surfaces. A guideline for this search is that in the chosen 
model unphysically short distances must be absent, which will lead to facetted atomic 
surfaces. The use of the set of atomic surfaces recently proposed by Katz [16], and 
which obey the closeness condition, may also facilitate this search. In this perspective, 
precise measurements of density and chemical composition are important and should 
give rise to specific constraints on sizes of the atomic hypersurfaces, such as those 
proposed by Kalugin [15,48]. 
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